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Elastic Wave Propagation in 
Bi,.,oSbo.,oTe  and Bi,Te  
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Department of Appfied Physics and Electronics, University of Durham, Durham, UK 

The six independent elastic constants of the monocrystalline, pseudo-binary alloy 
Bi, 6oSbo ,oTe3 have been measured by the ultrasonic pulse-echo technique. The elastic 
behaviour is compared and contrasted with those of Bi2Te3 and the group V semimetals 
with crystal structures belonging to the same point group, 3m. Elastic wave-velocity surface 
cross-sections, particle displacement and energy flux vectors are presented and discussed; 
the pure mode axes - knowledge of which is most useful in experimental ultrasonic 
studies - are given. Elastic wave propagation in Bi,.60Sbo.,0Te3 and Bi2Te3 shows 
characteristics expected for layer-type crystals with weak interlayer binding, i.e., 
comparatively large ultrasonic velocities in the xy plane and lower velocities along the 
direction (z) of weakest binding. 

1. In t roduct ion 
Among the most useful materials for direct 
conversion thermoelectric generators are bismuth 
telluride and its pseudo-binary alloys with 
Sb~Te~ [1]. Alloying can improve the thermo- 
electric figure of merit Z(= a 2 a/K) by decreasing 
the thermal conductivity K without markedly 
affecting the electrical conductivity cr or the 
thermoelectric power a. In consequence, the 
electrical properties of these materials have been 
the subject of many investigations [1-4]. But 
their lattice properties have received little 
attention; indeed a complete set of elastic moduli 
for Bi2Te3 itself has been measured only recently 
[5]. The present concern is to report pulse-echo 
measurements of the ultrasound wave-velocities 
and the elastic moduli for the alloy Bil.60Sb0.40 
Te3. Basic mechanical and thermodynamic 
information are furnished by the elastic constants 
and an insight gained into the nature of the 
chemical bonding, a subject of a certain amount 
of controversy in these materials [2]. The 
crystal structure of Bi~Te~ is composed of 
layers, each containing one type of atom, 
stacked in units of five, normal to the threefold 
axis: 

-Te(2)-Bi-Te (1) .. Te(~)-Bi-Te(2)-Bi-Te(~) .. Te(1) 

(see [2] for a detailed description). Drabble and 
Goodman [6] have proposed that there are 
essentially van der Waals type bonds between 
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adjacent layers of tellurium atoms of type (1) and 
Jenkins, Rayne and Ure [5] suggest that the 
elastic constants of Bi~Te3 are in accord with 
such bonding. One aim of the present study is to 
compare the elastic behaviour of Bil. 60Sb0.40Te~ 
with that of Bi2Tez and with that of the semi- 
metals arsenic, antimony and bismuth which 
belong to the same point group, 3m. The crystal 
lattices of bismuth and antimony are much less 
distorted than that of arsenic, which is very 
layer-like: the planes normal to the trigonal 
direction occur in pairs in which the atoms are 
comparatively close together, while these double 
layers are more widely separated from each 
other. A simple and useful model for arsenic in 
which the tightly bound double layers are 
assumed to be held by van der Waals forces 
gives the correct magnitude for the z-axis linear 
compressibility and thermal expansion [7]. Like 
arsenic, Bi~Tez and Bil.60Sb0.40Te z cleave readily 
normal to the z-axis, as a result of weak inter- 
layer binding forces; indeed preparation of the 
large samples required for pulse echo ultrasonic 
experiments is in itself a difficult task. To further 
the study of how far the mechanical properties 
are dominated by weak interlayer cohesion, the 
elastic constartt data are used in conjunction with 
the mathematical theory for wave propagation in 
trigonal crystals of the RI Laue group to derive 
the phase velocity surfaces and the particle 
displacement and energy flux vectors. 
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2. Experimental Details 
Specimens were cut from a boule, comprising 
several large grains, prepared by the horizontal 
zone-levelling technique. The boule and details 
of its chemical composition were kindly supplied 
by Professor D. A. Wright. Crystal perfection 
was examined by X-ray and etching techniques. 
The samples showed no veinous or cellular 
structure; back reflection Laue photographs 
showed the pinpoint spots which evidence 
unstrained materials. From Debye-Scherrer 
powder photographs, applying the Nelson-Riley 
extrapolation method, the lattice parameters 
were determined as a = 4.356 • 0.003A, c = 
30.448 ~ 0.010A and the c/a ratio as 6.990 
0.004; these results lie between those of Berkholtz 
[8] and Bekebrede and Guentert [9], but are 
closer to the latter. No extra order lines have 
been found in the X-ray powder photographs: 
the antimony atoms substitute randomly for 
bismuth. 

In crystals of the 3rn point group, the signs of 
tensor components can depend upon the choice 
of the right-handed (+ x, + y, + z) axial set in 
the particular crystal being studied; in the present 
instance, the sign of C14 must be unambiguously 
determined [7]. The convention used for the 
coordinate system is as follows. The z-axis, 
formed by the intersection of three mirror planes 
mutually orientated at ~ 120 ~ lies along the 
body diagonal of the primitive rhombohedral 
unit cell defined from the lattice translation 
vectors al, a2, aa. Three options obtain for the 
y-axis: one in each mirror plane; the sign of the 
chosen axis is defined by projecting the appropri- 
ate a~ on to the trigonal plane and then the 
positive y direction is taken outwards from the 
origin of the lattice translation vectors. The right- 
handed set is then completed with the + 
x-axis. 

Etching studies have been carried out on (111) 
surfaces exposed by cleavage using a mixture of 
one part HF, two parts HC1 and two parts 
distilled water for one minute, followed by one 
part bromine and five parts methanol and then 
washing in distilled water. The etch pits obtained 
are triangular with slightly rounded corners and 
have pyramidal bottoms (fig. 1), the shape 
common to other R3m crystals, including Bi~T% 
[10, 11]. The pit sides are parallel to the (10l )  
crystallographic directions; etch pits on one 
surface all have the same orientation: if the + z 
axis is taken as the outward normal from the 
etched surface, then a vector drawn from the pit 
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Figure I Pyramidal etch pits on the cleaved (1 1 1) surface 
of a Bil.6oSbo.4oT % crystal. Both symmetrical and asym- 
metrical pits with the projected apex deflected towards a 
base can be seen. The wavy lines are part of an extensive 
network covering the complete surface. 

centre normal to a pit side points along a + y 
axis. This is identical to the etch pit orientation 
on cleaved (11 1) surfaces of arsenic and anti- 
mony [7] and of an arsenic-antimony alloy [12]; 
this point does not seem to have been resolved for 
Bi2T% itself. Symmetrical pits are common;these 
are probably formed by dissolution along 
dislocation lines running along the [11 1 ] direc- 
tion [12]. Another commonly occurring type 
of pit has the projected apex deflected towards 
a triangle base; several can be seen in fig. 1. Pits 
of this type found in an arsenic-antimony alloy, 
have been attributed to the presence of disloca- 
tions along (100) directions [12]. Total etch pit 
counts are about 105 per cm ~. Extended disloca- 
tion networks lying in the (1 11) plane are 
revealed as shallow grooves; these either branch 
or terminate at an etch pit; Sagar and Faust 
[10, 11] have observed these networks in Bi2Te3 
and discussed them in detail. 

Samples used in the ultrasound wave-velocity 
1 ~  of measurements were aligned to within ~ 

the prerequisite crystallographic direction by 
back-reflection Laue X-ray photographs and 
then spark-cut and planed to have fiat and paral- 
lel faces. Ultrasonic wave transit times were 
measured to ~ 0.5 ~ by the single-ended pulse- 
echo technique at a carrier frequency of 12 MHz 
[7, 13, 15]. 

3. Ultrasonic Wave Propagation in 
Bi,.6oSbo ,oTe3 and Bi2Te3 

The elastic stiffness matrix for the RI Laue 
group, which includes the point group (3rn), is 



ELASTIC WAVE PROPAGATION IN Bit..o Sbo.~o Te8 AND Bi2Tea 

T A B L E  IElast ic Stiffness Constant Equations and Experimental Velocities at Liquid Nitrogen and Room 
Temperatures in Bi,.~0Sbo.~oT %. 

Elastic Stiffness Constant Equations Propagation Polarisation Experimental Experimental 
Direction Direction Velocity at 293 K Velocity at 77 K 

( • 10 -~ cm/sec) ( x 10 -5 cm/sec) 

p 7/12 = Cll 1 O0 
p v22 = �89 + C ~ )  

+ {C,, - C~6) 2 + 4C1,2}q lOO 
p v2 ~ = �89 + C ~ )  

- {(C,, - C.~) 2 + 4C1,2}~1 100 
p v, 2 = C,e �89 - C~) 010 
O v~ 2 = C2a 001 
p v~ 2 = C4~ 001 

2 p v72 = �89 + Caa) + C~a - C~ 
+ {(�89 - �89 - G,) 2 
+ (c12 + c ,  - c,,)2} �9 
1 c  2 0 % 2 = ~ (  n +  C 2 3 ) + C ~ 4 -  C ~  
- * (~C.  -- k C . .  - C . )  2 
+ ( C ~  + C ~  - Q4)2} * 

0, 1/~/2, 1/~/2 

0, 1/~/2, l /a /2  

100 2.94 3.05 

001 2.34 2.49 

010 1.24 1.28 
100 1.87 1.96 
001 2.38 2.49 
100 or 010 1.87 1.96 

O, 1/~/2, 1/V'2 2.69 2.77 

0, - 1/5/2,  1/~/2 1.19 1.27 

Cll CI2 C13 C14 0 0 
C12 Cn  C18 - Cla 0 0 
Cla C13 C83 0 0 0 
C14 - 6 " 1 ,  0 C44 0 0 

0 0 0 C44 C14 
0 0 0 C14 C66 

(1) 

Here C6G is equal to �89 - C~2): there are six 
independent elastic stiffness constants. In the 
Christoffel equations 

[Lik -- P v2 ~ik] Uok = 0 (2) 

where (Uol, Uo2, Uos) are the direction cosines of  
the particle displacement direction, the quad- 
ratic functions Li~ o f  the direction cosines 
(nt, n2, ns) o f  the propagat ion  vector become 

L n  = nl 2 (711 + n22 C6~ + //82 C44 + 2n2naC14 
L22 = nl 2 C~6 + n22 (711 + n32 C44 - 2n2naCla 
L33 = (n~ ~ + n22) C , ,  + //2 C33 (3) 
LI~ = 2nln8 C14 + �89 + C1~) 
L13 = nln3(C44 + C1~) + 2nl//8 C14 
L ~  = (//? - n~ ~) c~ ,  + / / ~ n ~ ( Q ~  + c, , )  

The equation to be solved is the cubic equation in 
p v2: 

det  tLik -- p v 2 ~/k] = 0 (4) 

Details of  the solution have been given elsewhere 
[14]. All the elastic stiffness moduli  except Ca3 
and the sign o f  C,4 can be obtained f rom wave 
velocity measurements along the major  crystallo- 
graphic axes (table I);  the further required data 
can be found f rom wave propagat ion along any 
direction for which both  na and n2 are no t  zero 
and n3 is not  zero, that  is any direction save for 

those in the xy plane or, o f  course, the z-axis. 
The equations for the directions chosen and the  
measured velocities are given in table I. 

The temperature dependencies of  four  veloci- 
ties were measured between 77 K and r o o m  
temperature (fig. 2). I t  proved difficult to p ropa-  
gate ultrasonic waves in the other directions; 
employed and measurements were made only a t  
77 K and 293 K. The elastic stiffness constants  
at these two temperatures calculated f rom the 
measured velocities by a least-mean-squares 
procedure [7] and taking the density as 7.722 
g. cm -a, are collected in table II, together with' 

T A B L E  II Elastic Stiffness Constants (C~j) in Units of 
10 'o dyn cm-2 and Elastic Compliance 
Constants (&j)  in Units of 10 -'3 cm 2 d y n - ' .  
The C/j for Bi2T % are taken from reference [5]. 

Bil. 60Sb0.40Te3 Bi2Tea 
293 K 77 K 300 K 80 K 

Cll 
Clz 
Cl3 
C~ 
Czz 
Ca4 
C66 

S,1 
$12 
&3 

San 
S4a 
$66 

66.6 72.2 68.47 73.32 
12.6 12.9 21.77 21.92 
33.0 35.3 27.03 28.74 
15.2 17.40 13.25 15,00 
44.0 47.90 47.68 50.80 
27.1 29.70 27.38 30.59 
27.0 29.65 23.35 25.70 

30.37 27.97 23.15 21.60 
+3.30 +2.27 -6 .37  - 5 . 6 6  

-25 .25  -22 .28  -9 .51  - 9 . 0 2  
-15 .18  -15 .05  -14 .28  -13 .37  

60.60 53.72 31.76 29.89 
53.93 51.3l 50.35 45.80 
54.14 51.40 59.04 54.52 
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Figure 2 The temperature dependence of 
some elastic stiffness constants of 
Bi1.6oSbo.4oTez. 

those of Bi2Tes [5 ] for comparison. Also included 
are the elastic compliances S~ obtained from 

S~r = ( -  1) ~+~ A~j~/A, (5) 

where A ~ is the determinant of the C~j terms and 
A~j ~ is the minor of the element C~-. The 
significance of the compliance constant values 
can be brought out by considering some simple 
cases of deformation under static loads. If a 
simple tensile stress is applied on the xy plane 
along the z-axis, all 17~- are zero except 17s~, the 
resultant strains are 

E l l = e 2 2 =  +$1~1788; Ezz= +$331738 

thus both Bi~Tez and Bia.60Sb0.4oTe3 contract in 
the xy plane (Saz is negative) while the crystal is 
extended along the z-axis (Szz is positive); the 
alloy shows a greater response to the applied 
stress than Bi2Te z. When a tensile stress is 
applied along the x-axis (or the y-axis), only 1711 
is not zero and the resultant strains are 

El1= +$11a11; E2~= +$1~1711; 
~33 = "~ $13 ~ E23 = E32 = -}- $14 ~ 

282 

As $11 is positive and Sla is negative, both 
materials extend along the x-axis and contract 
along the z-axis. But Slz is positive for the alloy 
and for arsenic) while being negative for Bi2Tea 
(and for bismuth and antimony), so while the 
alloy expands along the y-axis under the applied 
stress or11, Bi2Te3 contracts in that direction. The 
sense of the associated shear E2a is the same for 
both materials because $1~ for both is negative, 
as it is for bismuth and antimony but not for 
arsenic, 

T A B L E  III Linear and volume compressibilities of 3m 
crystals (units: 10 -13 cm 2 dyn- l ) .  The data 
for arsenic, antimony and bismuth are 
taken from reference [14], 

Bil,6oSbo.4oTea 293 K 26.94 10.1 8.42 
77 K 25.08 9.16 7.96 

Bi~Te3 300 K 27.28 12.74 7.27 
80K 25.69 11.85 6.92 

As Room temperature 17.2 26.4  --4.6 
Sb Room temperature 25.8 17.5 4.1 
Bi Room temperature 30.83 18.07 6.38 
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The behaviour of all five materials under 
hydrostatic pressure can be found from the 
linear (/3~, and 13• and volume compressibilities 
(/3v) (table Ill). At room temperature the volume 
compressibilities of Bi~T% and the alloy are 
somewhat larger than that of antimony, The 
anisotropies of the linear compressibilities of 
Bi~Te3 and Bil.60Sb0.a0Tea are less than those for 
all three semimetals. Although the linear change 
along the z-direction, produced by application of 
hydrostatic pressure, is less than those ill the x y  
plane, the difference is not nearly so pronounced 
as for arsenic. As the compressibilities depend 
upon the second derivative of the lattice poten- 
tial energy, we can conclude that, although the 
interatomic binding forces are less than those in 
the x y  plane, the proportion of covalent binding 
along the z-direction cannot be small. The model 
of van der Waals' forces between the layer planes 
is much less appropriate than for arsenic. 

In single crystals the ultrasound wave velocity 
depends upon the propagation direction; for any 
particular direction n, three waves can be 
propagated; In general, these need not be pure 
longitudinal (uA n = 0) or pure transverse 
(u. n = 0) waves, but their respective particle 
displacements are orthogonaI. To obtain the 
wave velocities, equation (4) must be solved for 
any chosen propagation direction. This is 
achieved by writing it as a general cubic equation 
in pv ~: 

p%~ + Ap~v ~ + Bpv ~ + C = O  (63 

where 

A = - ( L n  +Lz~ +L3~) 
B = (LuLz~  + L~Lz 3  + L2~Lzz - L~a ~ - 

La~ ~ - Llz ~) (7) 
C = (L~ILza ~ + L ~ L z ~  + L~a~L2z - 

LllL22L33 - 2L12L13L~z ) 

and then solving numerically by computer 
[7, 15]. If all possible values of the direction 
cosines (nl, n~,n3) are taken, the resultant 
velocities trace out three separate sheets. Cross- 
sections for the x y  plane (nz = 0) and for the x z  
plane (n~ = 0) constructed in velocity space are 
presented in fig. 3 for Bil.60Sb0.a0T% and Bi2T%. 
In ~rn crystals the x y  plane is the plane normal to 
the threefold inversion axis, and, since the sound 
velocities are independent of the sense of direc- 
tion, thexy velocity cross-sections exhibit sixfold 
rotationaL-sylnmetry. The x z  plane cross-section 
shape arises because this plane includes both the 
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binary x-axis and the z-axis. The two quasi- 
transverse wave sections touch at the z-axis 
where they become a twofold degenerate, pure 
shear wave. In general in a layer-like lattice, 
velocities of elastic waves transmitted within the 
tightly bound layers are greater than those of 
waves along the direction of weak binding. Such 
behaviour can be seen in the x z  cross-section of 
the velocity sheets for both BiaTe~ and the alloy 
but it is much less marked than for arsenic. 

The y z  mirror plane is a special case in crystals 
of the RI Laue group. Solution of the secular 
equation (4) shows that one pure shear wave can 
be propagated along any direction in this plane 
and has a velocity given in [14] 

pv 2 = n~(C66 - C~4) + C ~  + 2n2n3Cl~ 

The remaining two orthogonal solutions have 
velocities given by 

pv ~ = n22(C1~ - C83) + C ~  + C3a - 2n2n3C14 
i [(n~2(G1 - c ~ )  + c .  + c ~  
- 2n2n3C14) 2 + 4{(n~ns(C~4 + Ca3) 
- n22C~4) 2 - (n2~Q~ + n3~C~4 - 
- 2nzn3C~)(nzZ(C44 - C~3 ) + Ca3)}] ~ (9) 

Here the positive sign corresponds to a wave 
which has predominantly longitudinal character 
and may be referred to as a quasi-longitudinal 
wave. Similarly, the negative sign relates to a 
quasi-transverse wave. The three velocity cross- 
sections of Bi2T% and Bil.60Sb0.40T% are more 
like those of antimony than those of either bis- 
muth or arsenic. However, Bi2Tea and Bi,.6o 
Sb0.~0T% differ in one important respect. For 
the semimetals, in addition to the y-axis, there is 
one particular direction in the y z  plane for which 
all three propagated modes are pure. Bi2Te3 
and Bi~.60Sb0.40T% have two more pure direc- 
tions in the mirror plane. These can be seen in 
fig. 4 in which the solid line represents the devia- 
tion of the particle displacement vector of the 
quasi-longitudinal direction from the propaga- 
tion direction; each time this deviation is zero, 
there is a pure mode direction because there is 
already one pure shear wave for any propagation 
direction in the mirror plane and, by the require- 
ment of orthogonality, the third mode must also 
be a pure shear. Fig. 4 gives the results for 
Bi~.n0Sb0,40Te3 only; the curves for Bi3T% are 
very similar. However to complete the picture 
the pure mode directions in the y z  plane are 
collected in table IV; knowledge of the existence 
of these pure modes is most useful in ultrasonic 
attenuation studies. 
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wave  ( . . . . .  ). 

The energy flux associated with a pure longi- 
tudinal wave is always parallel to the propagation 
direction; this is not so for pure transverse 
waves, unless the mode axis has twofold, four- 
fold or sixfold rotational symmetry or is normal 
to a plane of reflection [16]. Save for these 
special cases, the energy flux vector deviates from 
the wave normal: the waves exhibit extraordinary 
refraction. In pulse echo ultrasonic experiments 
knowledge of the energy flux vectors is invaluable: 
transducers can then be put on the specimens in 
such a way as to avoid wall reflections. The i th 
component of the energy flow is 

- ( p  
Pi = - aij~ = 2v Ci~kz Uoj Uo~ nz (10) 

In crystals of the point group 3rn, P1 - the x-axis 
energy flux c o m p o n e n t - i s  always zero for 
waves propagated in the y z  mirror plane; the 
energy flux is always in this plane for such 
waves. Appropriate relationships for the angle 
that the energy flux vector makes with the + y 
axis have been given elsewhere [14]; the energy 
flux vectors associated with all three waves have 
been calculated for the y z  plane in Bil. G 0Sb 0.40Te8 

and Bi2Te3. Fig. 4 shows the results as angular 
deviations from the propagation direction. The 
curves for Bi~Te8 are very similar: only the 
energy flux deviations from the three pure mode 
directions other than the z-axis are presented here 
(table IV). The z-axis itself is a special case: the 
degenerate pure transverse waves which can be 
propagated along the z-axis exhibit internal 
conical refraction with a cone semiangle given by 
tan-a([C14]/C4~) [16] (see table IV for results). 

In a layer-like crystal, lattice vibrations are 
excited preferentially in the direction of greater 
linear compressibility because these have lower 
frequencies. Bi2Te3 an d  Bil.60Sb0.40Te 3 exhibit 
the characteristics expected for layer-like crystals. 
high direction insensitive, velocities within the 
x y  layer plane and much lower velocities along 
the direction (z) of weakest interatomic binding. 
But the anisotropy is much less marked than it is 
for arsenic. Plausibly, this is due to the fact that 
in these materials the weakest binding is between 
tightly bound sets of five layers, while in arsenic it 
is between pairs of layers. Nevertheless, the 
similarities in elastic behaviour between Bi2Te3 
and Bil.6oSbo.40T % can be accounted for on the 
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TABLE IV Pure Mode Directions in the yz plane of Crystals in the Point Group ]m. 

Bil.60Sbo.40Te3 Bi2Te8 As* Sb* Bi* 

Pure m o d e  directions 
(Angle f rom + y axis in the yz plane) 25 ~ 50.5 ~ 
Energy flux deviation Fas t  shear  - 36 ~ 44 ~ 
f rom propaga t ion  direction Slow shear  + 14 ~ - 3.5 ~ 
Semi-angle o f  the cone of  internal 
conical refraction 29.3 

148 ~ 28 ~ 51 ~ 149 ~ 10 ~ 153 ~ 163 ~ 
- 1 5 8  ~ - 3 2  ~ - 2 8  ~ --168 ~ --9.5 ~ + 2 9  ~ + 3 0  ~ 
--153 ~ + 14 ~ _ 1 . 0  o - -160 ~ - -22  ~ + 2 5  ~ + 6  ~ 

25.8 ~ 9 ~ 28.5 ~ 32.5 ~ 

*Data  f rom reference [14]. 

b a s i s  t h a t  t h e  c o m p a r a t i v e l y  w e a k  b i n d i n g  

b e t w e e n  - T e O ) . .  Te(1) - l a y e r s  d o e s  p l a y  a n  

i m p o r t a n t  r o l e :  i n  t h i s  c a s e ,  s u b s t i t u t i o n  o f  

a n t i m o n y  a t o m s  f o r  b i s m u t h  s h o u l d  n o t  h a v e  a 

l a r g e  e f fec t .  
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